Algebraic Analysis Of Singular Perturbation Theory

Algebraic Analysis Of Singular Perturbation Theory
by Takahiro Kawai / / / PDF


Read Online 4.7 MB Download


The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main approach used by the authors is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. The volume is suitable for graduate students and researchers interested in differential equations and special functions.

views: 405